Short Note The Puzzle of the 1996 Bárdarbunga, Iceland, Earthquake: No Volumetric Component in the Source Mechanism
نویسندگان
چکیده
A volcanic earthquake with Mw 5:6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence ofM 5 events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Tensor catalog. Fortunately, it was recorded well by the regional-scale Iceland Hotspot Project seismic experiment. We investigated the event with a complete moment tensor inversion method using regional long-period seismic waveforms and a composite structural model. The moment tensor inversion using data from stations of the Iceland Hotspot Project yields a non-double-couple solution with a 67% vertically oriented compensated linear vector dipole component, a 32% doublecouple component, and a statistically insignificant (2%) volumetric (isotropic) contraction. This indicates the absence of a net volumetric component, which is puzzling in the case of a large volcanic earthquake that apparently is not explained by shear slip on a planar fault. A possible volcanic mechanism that can produce an earthquake without a volumetric component involves two offset sources with similar but opposite volume changes. We show that although such a model cannot be ruled out, the circumstances under which it could happen are rare.
منابع مشابه
Insights into the kinematics of a volcanic caldera drop: Probabilistic finite-source inversion of the 1996 Bárdarbunga, Iceland, earthquake
متن کامل
Rupture characteristics of the 2012 earthquake doublet in Ahar-Varzagan region using the Empirical Green Function method
On August 11, 2012,within several minutes, two shallow destructive earthquakes with moment magnitudes of 6.5 and 6.4 occurred in Varzagan, Azerbaijan-e-Sharghi Province, in the northwest of Iran In this study, the Empirical Green Function (EGF) method was used for strong ground motion simulationto estimate the source parameters and rupture characteristics of the earthquakes. To simulate the fir...
متن کاملVibration Mechanism of 13th Century Historical Menar-Jonban Monument in Iran
Abstract Historical monument of Menar-Jonban (shaking tower) is located in the famous city of Isfahan in central Iran. Initial construction of this interesting and unique masonry monument belongs to 700 years ago. This monument has two vibrating circular towers of 7.5 m height. These towers are separated from each other by a distance of 9.2 m and constructed on top of an ancient tomb of 10 m...
متن کاملProbabilistic Assessment of Earthquake Damage and Loss for the City of Tehran, Iran
Tehran is one of the densely populated metropolises located in earthquake-prone regions. Tehran, the population of which surpasses 8 million people, is the most populated area in Iran. There are historical evidences confirming that catastrophic earthquakes have destroyed the city in past years. In the present paper, our study covers all parts of Tehran because there is the potential of signific...
متن کاملCombination of Artificial Neural Network and Genetic Algorithm to Inverse Source Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model Conjunction
In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its surrounding area are processed to derive the map of line of sight (LOS) displacement over the study area. The...
متن کامل